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ANALYTICAL STUDY OF SOME THERMAL STRESSES IN A NUCLEAR ROCKET FUEL ELEMENT (U)

by Edward R. Hersman, Fugene J. Pleban, John S..Clark,
and Dennis P. Townsend

.Lewis Research Center

SUMMARY

Reactor core reliability, essential to the successful development of nu-
clear rockets, can only be evaluated if core thermal stresses are known. These
stresses in turn depend upon the axial and radial material temperature profiles
of the fuel elements which make up the core. In order to save both time and
money in obtaining the required fuel element thermal information, an electrical
simulation of nuclear heating was proposed and, in addition, material tempera-
tures were calculated for both cases.

At core operating temperatures, the fuel element lining probably flows
plastically. Lack of stress-strain and brittle-ductile transition material
properties for fuel element materials prevents the accurate determination of
thermal stresses for elements subjected to plastic flow. As a consequence,
the thermal stress calculations currently possible must be restricted to. the
elastic region, and since it is known that these may not be the actual fuel
element stresses, only an approximate stress study can be performed.

Details of an elastic thermal stress calculation procedure are reported
herein, and the method is applied to a sample fuel element to illustrate how
it may be used to examine stresses in fuel elements. In addition, some con-
siderations that are required in evaluating the validity of the results (and
simulation) are included.

For the electrically heated fuel elements used as examples herein, it was
found that the values of electrical resistivity of graphite had a considerable
effect upon the power distribution and the wall and fluid temperatures. In
addition, it was found that the niobium carbide lining temperatures for the
electrically heated fuel elements were lower than those for the nuclear heated
elements.

INTRODUCTION

Nuclear rocket engines currently under development (such as NERVA) em-
ploy nuclear reactors whose cores are composed for hundreds of graphite fuel
elements, each of which contains numerous circular flow passages through which
the hydrogen propellant passes. The ability to develop reliable fuel elements
is essential to insure the success of these nuclear rocket engines. Fuel ele-
ment: reliability in turn requires that permissible strain levels be maintained




in the element and that corrosion of the element bé minimized. To determine
that both of these criteria are satisfied, it is necessary to know how to
calculate the fuel element material temperatures and tempersture gradients.

Analytical procedures for determining fuel element temperatures and tem-
perature gradients, whether the element is heated electrically or by nuclear
radiation, have been presented in reference 1. The analytical procedures were
applied to a typical fuel element in reference 1 and showed that over most of
the fuel element length, the temperatures for the element in the nuclear envi-
romment exceeded those for the electrically heated one. See "SAMPLE CALCULA-
TIONS" for more details.

With methods available for fuel element thermal analysis, the next step
is the evaluation of stress for the nuclear and electrical temperature envi-
romments. Lack of stress-strain and brittle-ductile transition property
value data for fuel element materials at low and at elevated (operating) tem-
peratures limits present day stress analyses to the elastic region. Such
stresses do not necessarily represent actual fuel element stresses, and hence
can only be used in an approximate way.

The report presents details of an elastic thermal stress analysis which,
as mentioned previously, is applicable only in an approximate way. This
theory is then applied to identical fuel elements, one heated electrically
and the other by nuclear radiation, and the thermal stresses are determined.

The stress analysis considers longitudinal and radial steady-state tem-
perature varistions, the interaction between the fuel element material
(graphite) and the protective passage lining (niobium carbide), and material
property variations with temperature. Methods discussed in references 2, 3,
and 4 are applied. For the application of the analysis, an NRX-A fuel element
was selected; a nuclear case and two electrical cases (with different values
of electrical resistivity of graphite) are studied.

ANALYSTS
Thermal

A detailed description of the analytical methods used for predicting
fuel-element temperatures and temperature gradients for both nuclear and
electrical resistance heated fuel elements is given in reference 1. Briefly,
the methods consist of two computer programs: CAFF (Core Analysis-Fluid Flow)
and CAM (Core Analysis-Material). The program CAFF is used to calculate fluid
conditions, heat-transfer coefficients, heat fluxes, and wall temperatures as
functions of axial position in a multipassage (multiorifice) core with non-
uniform heat generation. The program CAM uses output data from CAFF, core




geometry data, and power generation rates as input to calculate steady-state
axial and radial temperature distributions and maximum temperature gradients
at each section of a three-dimensional solid with internal hegt generation
and convectively cooled boundaries.

Stress

An approximate fuel element elastic stress analysis is presented herein,
The resulting computer program is referred to as TSAFE (Thermal Stress Analysis-
Fuel Element). The symbols used are defined in Appendix A, and details of the
analysis are given in Appendices B and C. A discussion of its limitations,
theory and procedures is given in the following paragraphs.

The analysis presented is approximate since it is limited to the elastic
range. Furthermore, the fuel element is approximated by a cylinder of niocbium
carbide (lining) and a cylinder of graphite (fuel) drawn concentrically about
the axial coolant holes. The interactions of the adjacent graphite cylinders
are ignored; the outer boundary is assumed to be stress free. The error intro-
duced by these assumptions is not known. :

At the present time there is no known, valid exact solution to the hex-
agonal lined fuel element problem. Therefore in order to compare the effect
of nuclear heating with electrical heating on a fuel element which includes a
lining, it was necessary to develop an approximation scheme. :

The following considerations were included in the approximate analysis:

1. The nonlinear temperature variations in both the radial and longitudi-
nal directions

2. The combined stiffness of the lining and the base material of the
element;

3. The differences in the mean coefficient of thermal expansion between
the two materials

4, A thick-shell cylinder analysis
A finite cylinder method was used in the analysis. The long cylindrical
model assumed is divided into a finite number of short cylinders. The length

of these cylinders is chosen to satisfy the following three conditions:

1. The longitudinal temperature gradient along the length of the finite
cylinder can be considered linear.
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2. The finite cylinder motions must be accurately defined by rigid body
motions when elastic foundation theory is used (ref. 2).

3. The effects of the radial gradient at the finite cylinder ends over-
lay insofar as curvature of the cylinder is concerned.

Satisfaction of these three conditions implies that each finite cylinder
would deform (due to longitudinal temperature and coefficient of thermal ex-.
pansion variations) into the form of a truncated cone, with the ends slightly
curved due to a difference in radial gradient between the ends.

The expansion profile of the overall long cylinder then is approximated
by a series of curved chords; these chord shapes being generated by the rigid
body and curvature from the radial and longitudinal temperature gradient
variations. At each junction of any two finite cylinders, there is a change
in slope and a difference in expansion. To satisfy the uniqueness theorem,
compatibility has to be restored at these junctions. Therefore, a radial
moment and a shear force must be applied at each junction to restore compati-
bility. A set of compatibility equations have been written equating the de-
flection and rotation of adjacent finite cylinders. The simultaneous solu-
tion of all the compatibility equations yields finite values of the moments
and shears applied. When added algebraically to the forces due to the inter-
action between the liner base material and the force applied by assuming a
generalized plain strain condition the resultants will yield the complete
load history along the cylindrical model. Once these values are obtained,
the stresses and motions in the cylindrical model are obtained.

The first step in the analysis is to determine the free-body radial
motion of each finite cylinder. This radial motion is affected by the longi-
tudinal temperature gradient, radial temperature gradient and interaction be-
tween the lining (niobium carbide) and base material (graphite) including the
biaxial effect between the two materials. The general expression for the
radial motion at any point due to temperature effects is developed in Appen-
dix B, (eq.(B8). To this expression, the radial motion due to the inter-
action between the lining and graphite is added. The latter was derived
using ordinary shrink fit methods to determine a contact pressure; knowing
the contact pressure the radial motions of the liner and graphite can be
found using equations set forth in reference 3. Subsequently, an overall
general expression for free body radial motion was developed that includes
both a radial temperature distribution and the interaction between the lining
and the graphite due to differences in thermal expansion properties.

Using the radial temperature distribution at each end of a finite cylin-
der, the radial motion is determined for each finite cylinder. This radial
motion consists of a displacement u and a rigid body rotation y. In
addition to these two motions, two other motions must be considered. These




result from the fact that a condition of generalized plane strain was assumed
initially. In reality, the ends of the finite cylinder can change their cur-
vature to a degree not anticipated by rigid body motions. The assumed stress
on the eylinderends does not exist and to partially account for this fact, a
moment is calculated from this stress, reversed, and thus generates the de-
sired change in curvature as well as making the longitudinal end stress nearer
reality. This results in an additional displacement and rotation at each end
of a finite cylinder. In the analysis, this displacement is designated as x
and the rotation as ¢. These two motions are determined by using elastic
foundation theory. Therefore, the total free-body displacement & at each
end is a summation of u and x, and the total free-body rotation 6 at
each end is a summation of y and .

The next phase of the analysis is to join the finite cylinders into a
complete long cylinder. To do this the ends of each finite cylinder must be
compatible with the ends of an adjacent cylinder with respect to displace-
ment and rotation. In order to accomplish this, a moment and shear are
applied at each junction. This results in a series of equations for each
junetion. By solving all the equations for the ends simultaneously, finite
values are obtained for the moments and shear applied. Using these moments :
and shears, the final motion at r. which is the neutral axis for a beam of
0.0l radian width taken from the cylinder, can be determined at any station
along the length:. Through the use of thick shell coefficients, the motion
at any radial point can be found. Knowing the motion at any point, the strain
at that point can be found and from the strain, the stresses can be determined.

SAMPLE CAILCULATIONS

For the sample calculations, an NRX-A fuel element was chosen. This is
the type of fuel element being developed by the Westinghouse Astronuclear
Laboratory for the NERVA program and is the one for which the material tem-
peratures and temperature gradients were calculated (ref. 1).

Description of Fuel Element

A sketch of a typical NRX-A fuel element is shown in figure 1. It is
made from hexagonal fuel graphite (3/4 in. nominal across the flats), is
52 inches long, and contains nineteen 0.094 inch diameter flow passages
0.173 inch apart. The inside of each passage is lined by a vapor deposition
process with 0.001 to 0.002 inch of niobium carbide; this lining prevents the
flowing hydrogen from reacting with the graphite in the fuel element to form
hydrocarbons. It was assumed that no cracks existed in the niobium carbide.




Materials Properties

For application of the analyses to a particular fuel element, property
values of graphite and niobium carbide were required. Thermal property
values of Graph-i-tite G were used; these are essentially the same as those
for fueled graphite. Since both thermal and stress computations depend on
property values, results reported herein can be improved as better property
values become available. The property values used in the calculations are
given either as constant values or as figure numbers in the following table:

Niobium | Graphite
carbide
Density, p, 1b/in.S 0.28 0.0615
Thermal conductivity, k, Btu/(sec (in.)(°R) | Fig. 2 Fig. 2
Specific heat, c,., ‘_Btu/(lb) OR) 0.14 Fig. 3
Electrical re51s%1v1ty, (ohm)( m) Fig. 4 Fig. 4
Young's modulus, E, lb/ln. Fig. 5 Fig. 5
Mean coefficient of linear expansion, «, Fig. 6 Fig. 6
in. /(in. )(°R)
Poisson's ratio, v, dimensionless 0.2 | 0.3

The densities of niobium carbide and graphite were obtained from references
5 and 6. The curve for electrical resistivity of niobium carbide was ob-
tained from reference 7; the curve for thermal conductivity of niobium car-
bide was obtained from unpublished data. The curves for Young's modulus
and mean coefficient of linear expansion for niobium carbide were obtained
from reference 8. All other property values were obtained from Westinghouse
data. The dashed curve for electrical resistivity of graphite was suggested
by Westinghouse after the preparation of reference 1.

The possible transition change from brittle to ductile conditions would
be highly important in an actual study of reliability of the coating. TUn-
fortunately material data along this line are very sparse.

Cases Analyzed

Nuclear. - The maximum radial power occurs at the core centerline (ex-
cept for fluctuations around the periphery which would be extremely difficult
to analyze). Hence, a fuel element in the central fuel cluster was selected
for the calculations since maximum temperature gradients will occur in this
cluster. Every element in the core must be capable of withstanding this ex-
treme case if failure is to be avoided.




For inlet conditions, a gas temperature of 248° R and a gas pressure of
689 pounds per square inch absolute were assumed. A flow rate of 0.05 pound
per second, an orifice of 0.056 inch diameter, and a head loss coefficient
of 1.44 were also assumed. These values were all obtained from Westinghouse
data, and are intended to simulate actual operating conditions in a nuclear
rocket.

Electrical. - The same inlet conditions and flow rate.as. those used in
the nuclear case were assumed for the electrical cases, ©Since, in the elec-
trical case, the flow is controlled externally, no orifice is required. The
usual value of 0.5 for head loss coefficient applicable for a square cornered
opening was used. '

The power applied to the element was adjusted until the same steady-
state outlet gas temperature as that obtained for the nuclear case was
achieved. Thus, since the inlet and outlet conditions and the flow rate are
the same for the nuclear and electrical case, the total heat added to the
hydrogen should be the same. This requires about 1 megawatt of direct cur-
rent electrical power.

It was assumed that electrical resistance heating occurred in the
niobium carbide lining and the graphite fuel. For both sets of values of
electrical resistivity of graphite material temperatures and temperature
gradients were calculated.

Analytical Procedure

Thermal. - For the thermal calculations, the fuel element was divided
into 52 one-inch sections and, because of assumed temperature symmetry, one-
twelfth of a section was studied. Figure 7 shows the nodal geometry employed
in this one-twelfth section. Flow rate and fluid property values were assumed
to be identical in each flow passage. Details of the actual calculation pro-
cedures are given in reference 1; the temperature distributions were all
determined so that the same exit gas temperature resulted for each case con-
sidered.

Stress analysis. - As previously mentioned, the fuel element was simu-
lated by small adjoining cylinders circumscribed about each cooclant passage
hole (fig. 8). The analysis is conducted on one of the cylinders assuming
neighboring cylinders offer negligible constraint. The cylindrical model was
divided into 417 one-eight-inch lengths based on the length constraint dis- -
cussed earlier and explained in Appendix B. The fuel element geometry, the
temperature-dependent physical properties for graphite and niobium carbide,
and the temperature distributions from CAM (ref. 1) are fed into TSAFE as
input data. A detailled description of the analytical procedures used by
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TSAFE for the nuclear and electric case is described in Appendix B. The out-
put from TSAFE includes a listing of all input data as introduced for each
station n and each element m, elements of the bandmatrix [A] of coeffie
cients, resulting solution vector of redundant loads and moments at each
station and the tangential and longitudinal stresses at each station.

RESULTS AND DISCUSSION
Ve Thermal Analysis

Figure 9 shows a comparison between the nuclear and electrical heat
generation rate in the fueled graphite portion of the fuel element as a
flnction of axial position. The usual cosine-type distribution is seen for
the nuclear case. At the core inlet, a rate of about 15 Btu/(sec)(in.d) is
noted. Jfhe rate increases rapidly and levels off to a maximum of about
58@§pﬁy(sec)(in.3) about midway down the element and finally decreases to
abelt 10 Btu/(sec)(in.3) at the element end. The heat generation rate for
the electric case with the original resistivity started at about 22.5
Btu/(sec)(in.d) and continuously increased to a maximum of about
63 Btu/(sec)(in.®) at the element end. The revised electrical resistivity
data yielded a nearly linear function which started at about 29 Btu/
(sec)(in.”) and increased to about 48 Btu/(sec)(in.®). The nuclear heat
generation rate is much greater than either electrical case in the central
portion of the fuel element; at the hot end, the opposite is true. The
portions of the electrical data beyond the extremes dencted "End effect
1limit" on the figure should be ignored. This portion of the element is the
chuck gripping area and conduction and power maldistribution effects affect
the results in these areas. '

Figure 10 compares the fluid temperatures as a function of axial position
for the three cases considered. The nuclear and electric (original resis-
tivity) data are the same as reported in reference 1. The curve for the elec-
trical (revised resistivity) case is nearly linear and crosses the nuclear
curve about 18 inches from the core inlet.

In figure 11 the average nlobium carbide lining temperatures as a func-
tion of length are compared for the cases considered. Average niobium carbide
temperature is of interest since local corrosion of the fuel element appears
to be a function of this temperature. The temperatures for the nuclear cases
are seen to be higher than any of the electrical cases except for about
10 inches on the cold end and about 6 inches at the hot end. Differences as
high as 800° R are seen to exist from the element midlength to the 40 inch
point.




Figure 12 compares the maximum material temperatures as a function of
axial position. For about the first 19 inches of the electrically heated
cases, the maximum temperature occurs at node 184 (see fig. 7); for the re-
maining length of the electrically heated cases, the maximum occurs at ‘
node 46; for the nuclear case, the maximum temperature occurs over the com-
plete element length at node 184. The results are similar to figure 11;
the nuclear case is hotter than the electrical cases except for about
8 inches on the cold end and 6 inches on the hot end. Differences as high
as 1000° R are noted between the nuclear case and the electrical (original
resistivity) case. Differénces of 7500 R are seen between the nuclear and
electrical (revised resistivity) case.

Figure 13(a) and (b) compares material temperatures as a function of
node location (see fig. 7) for all cases considered at station 48 and sta-
tion 32, respectively. The temperatures of nodes 10, 31, 37, 38, 46,and 50
were used for the stress computations since node 46 was found to be the
hottest for the electrical cases, At station 48 the temperatures for the
three cases are seen to be about the same. The temperature gradients
(AT/AL) are seen to be greater in the electrical cases than the nuclear
case, however; this is expected since the heat generation rate for the
electrical cases is greater than the nuclear case at this station (see
fig. 9). In figure 13(b) the temperatures for the nuclear case are seen
to be about 650° R greater than the electrical (revised resistivity) case
and about 1000° R greater than the electrical (original resistivity) case.
At this station the gradients are seen to be greater in the nuclear case,
as expected. "

Stress Analysis

The elastic analysis as used will yleld strains which are too low for
the lining and higher than reality for the graphite, provided the former
(lining) enters a plastic stage at high operating temperatures.

Results obtained by applying the thermal stress analysis to the sample
calculations are shown on figures 14 to 19. Figures 14, 15, and 16 present
the longitudinal thermal stresses at the outer radius of the graphite, the
Juncture between the graphite and the niobium carbide lining, and at the
average radius of the lining, respectively. Tangential thermal stresgses at
the same radii are shown in figures 17, 18, and 19, respectively.

A study of the stress curves (figs. 14 to 19) shows that extremely high
stresses can be found along a substantial length of the elements, regardless
of the method of heating. )
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The temperature gradients in the tangential and radial directions in
the graphite portion of the fuel element in themselves cause only minor
stress and could be ignored. The main stress causing effect in the fuel
element is duve primarily to the different mean coefficients of linear ex-
pansion of niobium carbide and graphlte.

. Figure 6 indicates that there 1s a severe abrupt change in slope of the.
mean coefficient of linear expansion curve for niobium carbide at around
3740° R. A study of the stress curves (figs. 14 to 19) in conjunction with
a typical axial temperature profile curve (fig. 12) shows an abrupt increase
in stress rate which reflects the above change in the coefficient of linear
expansion

Other Considerations

The degree of prestressing induced by the coating process is at present
beyond the "state-of-the-art". The carbide is deposited in a stress-free con-
dition but is in a tensile stress condition upocn cooling since its coefficient
of contraction is greater than that of the graphite. The degree of prestress
induced by the cooling operation after the coating process is a measure of the
ability of the lining to act without fracture at the operating temperatures of
the reactor. At fabrication temperatures in excess of 3000° ¥, the lining is
much more likely to fracture in tension during cooldown. If during the coat-
ing process, stringent temperature control is not maintained on the element
and the temperature is somewhat in the neighborhood of 3000° F, inconsistent
cracking upon cooling down could develop in the lining.

Upon heating in the operating stages of the reactor, the lining tends to
enter into a compressive stage which reduces the prestress. When the operat-
ing temperature is high enough, the prestress induced by the manufacturing
process is eliminated. If the temperature at operating conditions is substan-
tially higher than the fabrication temperature, the tensile strains upon cool-
ing down from operating may crack the lining.

The mean coefficient of linear expansion data used indicates that if the
niobium carbide is heated to high temperatures, even without load, it will not
return to its original length. The temperature range where this becomes effec~
tive is not known, nor is the reason for it defined. If the operating tempera-
tures of the reactor are high enough and the niobium carbide does not return to
its original length upon cooling down, the tendency to fracture will be reduced
when the fuel element reaches normal room temperature. Substantial material
testing of niobium carbide must be made if guess work is to be eliminated from
the coating failure picture.
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CONCLUDING REMARKS

The revised electrical resistivity data (as a function of temperature),
which was obtained from Westinghouse data, yields a more nearly uniform heat
generation profile within the electrically heated fuel elements. As a result,
the large differences in temperatures between the nuclear and electrical
(original resistivity) cases has been reduced somewhat. However, the tempera-
tures of a nuclear heated element are still greater than the temperatures in
the electrical simulation except for a few inches on each end of the element.
The electrically heated fuel elements had a lower niobium carbide lining tem-
peratures than nuclear heated elements over most of the element length.

The main stress causing effect in the fuel element is the difference be-
tween the mean coefficients of linear expansion of niobium carbide lining and
graphite. An anomaly exists in the reported coefficient of linear expansion
for niobium carbide which produced a significant stress rate change when the
material temperature exceeds 3740° R.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, March 10, 1966.
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APPENDIX A
SYMBOLS

.. 2
area, in.

elastic foundation coefficients (see egs. (C38), (C39), (C45), (C48),

(C47), and (C48))
constants of integration
uniform axial stress, o0,, psi
specific heat of material, (Btu)(1b~1)(°r"1)
flexural rigidity, 1b in.2

modulus of elasticity, psi'

thick cylPnder correction coefficients (see egs. (€29), (C32),
and (C34))

distance to an equilibrium position, in.

moment of inertia, in.%

foundation spring constant, in."l
thermal conductivity, (Btu)(sec'l)(in.'l)(oR‘l)
length, in.

moment which helps to hold the element in a condition of plain
strain, in. 1b

concentrated moment, in, 1b

pure moment of unit value, in. 1b
element of cylinder

an unknown couple force, 1b

pressure force, psi

uniform pressure present as the result of a circumferential cut, psi

. ——
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pressure force to restore compatibility, psi

shrink-fit pressure force, psi

s couple force replacing an applied unit moment, 1b

redundant moment at station n, in. 1b. .. g

redundant force at station n, 1b . . -

electrical resistivity

radius, in.

distance from origin to neutral axis, in.

defined by equation (C20)

an expression for the temperature_distribution at any radius r, OR
temperature, °R

radial displacement at ahy‘radius r, in.

concentrated shear force, 1b

radial deflection due to M, in.

distance from a centroidal axis to an elemental area r dr dB
coefficient of thermal expansion, OR‘1

half angle of sector, radlans

rigid body end rotation, radians

total radial deflection including effects of redundants, in. (see eq. (B37))
total free radial deflection, in. (see egs. (B34) or (B35))

elongation, in. in.-1

total end rotation including effects of redundants, radians (see eq. (B38))
total free end rotation, .radians

elastic foundation paremeter, in.-1 Fid
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v Poisson's ratio

o stress, psi

0] end rotation due to . Me, radians
P end rotation due to M, radians

[A] matrix of coefficients of the unknowns, n X n
[D] column matrix of constant elements, n X 1

[R] column matrix of unknowns, n X 1

Subscripts:

a cylinder part a

b cylinder part b

c composite section

eq equivalent

G outer cylinder or outer sector
i inside

J Juncture

M mean

m element

max maximum

N = inner cylinder or inner sector
n station (1 < n < 417)

o] outside

r radial

t tangential




tot total

X restoring moment, P(rxg - rxy)
Z longitudinal (axial)
Subscript:

' part of a whole
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APPENDIX B
THERMAL STRESS ANALYSIS OF A FUEL ELEMENT (TSAFE)

An approximate thermal stress analysis study was programmed to solve
for the displacements and stresses of a cylindrical fuel element due to steady-
state temperature conditions in the reactor. The analysis was coded in
Fortran IV language to be accepted by the IBM D-C 7044/7094 computer system,

The program accepts the fuel element geometry, material physical properties
and temperature data as input.

ASSUMPTIONS

The following assumptions were used as a basis for the formulation of
the analysis:

1. The materials involved are of ‘a homogeneous elastic nature.

2. The hexagon cross section of the fuel element was simulated by
identical adjoining cycliders circumscribed about each flow hole as shown in
figure 8(a). The radial constraints imposed by neighboring cylinders are
neglected.

3. The temperature distribution, specified at radial positions of a
cylinder section, are symmetric with respect to the longitudinal axis of the
cylinder. »

The following input data are required:

1. Total fuel element length.

2. Number of stations along the length of the fuel element.

3. Constant distance between stations; i.e., length of each finite
cylinder. This length must satisfy the conditions of equation (C35).

4. The number of radial positions (layers) through the cylinder
thickness. (Limited to a maximum 5 radii).

5. The radii from the cylinder axis to each radial position.

6. Average ?oissbn's ratio for both the lining material and the cylinder
material.
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7. Polynomial coefficients and degree of the least squares curve fit
of the longitudinal (axial) temperature distribution data at each radial
position. . ‘

8. In lieu of 7, a discrete map of temperature valuee at each radlal’
1ayer for each statlon aloﬂg the lengths

i In addltlon to- the above ‘data the follow1ng phys1cal propertles as a
furction of temperature (°F) are required:

(a) Modulus of Elasticity as a function .of temperature (°F).

(b) Mean coefficient of Linear Expansion as a function of
temperature (°F).

DERIVATION OF THE EQUATIONS USED IN THE CAICULATION PROCEDURE

The hexagonal shaped fuel element wag replaced by a single cylinder
model containing an internal lining (see fig. 8). The model used is a
direct result of assumption 2. The cylinder is divided longitudinally
into finite lengths. The maximum value of a particular length is a function
of the parameter Al, from the theory of beams on elastic foundation
(ref. 2). Analys1s of the cylinder for thermal stresses was by the "finite
cylinder method" which is similar to the analysis of beams of variable
flexural rigidity found in reference 2, and consists of three distinct parts.

In the first part, end rotations and radial deflections are calculated
in the free state at each station (division) of the cylinder model due to
the given radial and longitudinal (axial) temperature distributions and
thelr secondary effects.

Compatibility equations for slope and deflection between cylinder ends
are derived in the second part. The third part is concerned with the solu-
tion of the above equations to yield redundant moments and shears at each
cylinder station which, in turn, are used to calculate final motions and
equivalent stresses at any point on the complete cylinder.

Part I - Derivation of Radial Deflection and End Rotation Equations

A, Radial deflection equations. - Given T, an expression for the
temperature at any radius r, the radial motion at any radius r of &
cylinder with concentrie circular hole will be derived from basic equa-
tions found in reference 4, The subscript n identifying every egquation
in this subpart with a station n along the length will be omitted here;
the subseript n will be inserted later, when necessary.
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The general equation for the radial deflection u at anyvradius r
at any station . n along the length of a cylinder under full longitudinal
restraint (plane strain) is:

'y

, ¢,
Tr dr + Cyr + == (Bl)

where Cq and Cp are determined from boundary conditions.

: The displacement u 1is affected by a uniform axial stress oy = C3
(ref. 4, p. 409). The additon of the term -vCzr/E to the right side of
equation (Bl) represents the effect on u of this uniform stress on the
cylinder end.

From reference 4, page 409, equation (259f), the general expression
for axial stress under the condition of plane strain is:

oET ZVEC

%= Ty (1 + v)(l - 2v) (%2)

The resultant of the axial stress for a cylinder with an inside radius ry
and outside radius r, is:

vaECl(r - rz) (83)
== +
ogr dr FIEAT T N(T - 2y) _
The resultant of the uniform axial stress Cz .is: C5ﬂ(rg'- r%). The
value of Cz which makes the total axial force zero, is obtained by
adding the resultants and solving for Cz as explained in reference 4,
pages 399 to 401:
2vEC
208 1
Tr dr = B4)
(1 - v)(r? - (L + v)(1 - 2v) (

Equation (Bl) including effects of Cz now becomes:
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iy i
_{1+v)a r, 2
I Gy Trdr+Cl+r
I‘i '
o)
2vEC '
vr 20.B 1
S Tr dr - , (B5)
B 2 2 (L +v)(1-2v)
(L - v)(xS - rf)
L. ry -
From reference 4, page 412:
o)
c. = (1 + vg(lz- Zv%a Tr ar (B6)
(1 - v)(ry - ry)
frs
2 o
1+ v)ars
5 = ( V; 1 = Tr dr (B7)
(1 - v)(x% - )
I3

Substituting (B6) and (B7) into (BS5) the deflection u at any radius r is:

¢ T
v (1 - v)r(ig - r%) (3 + )G - rg)f e ar

1 fr.
1

v B - mv) + 2B+ )]

where the prime (') superscript denotes part of the total free deflection.
For a composite cylinder (fig. 20) the free deflections at a radial
position of the outer cylinder (G) (ry, ry, and rj) with no interactions
from the immer cylinder (N) are:
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%

ul = [:(1 + vG)(rg - rg) + rg(l - SVG)

(1 - vG)rQ(rg - %)
O 5 N
+ rg(l + VG)] f Tr dr (B9)
ro
dJ

@ c
u(': = : ¢ 2 oy - (l + VG)(I% - r%)f Tr Dr
(1 - VG_)I'C(I'O - rj), , r

| ]
+ [78(2 - svg) + r§(1 + vg)) f rroary  C (Bl0)
f A

J
o o
! = G : 2. - 1/ ;’:.)’?’ I
.6 (1 - vg)rj(rg - rg) {J':(l svg) (1 + vg) r il AR

Similarly the free deflections of the inner cylinder (N) at rj and Iy
are: , '

u! = N (1 + v )(x2 - r2) ’jTrdr
N 2 _ .2 NN i’
2 (1 - VN)I'j(I‘j ri) Ty

o
+ E‘?‘l - BVN) + rzi(l + vN):l j Tr dr} - (.Biz):
i :

*3
ui = e 5 5 rzi[(l - SVN) + (1 + vN)]f Tr 4r (B13) -
(1 - vz (ry - :r_'i) T

B. End rotation equations. - The rotation of element m at station n
is due to (1) the difference between the radial displacements at each end
and (2) the reversal of a moment which helps to hold the ends of the element
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m in plane strain. The rigid body rotation at the neutral radius r, of
the element m due to the radial displacements at both ends of element m
is given by the expression (fig. 21):

u -u
. C,yn e,ntl _ ;
Ten = ? 7 2 = Te,n+1 (B14)

Clockwise rotation is assumed plus (+).

The moment, corrected for a 0.0l radian section, which helps to hold
the element m in a condition of plane strain at station n is obtained
from the expression:

o]
M, = 0.0L 0,¥er dr = 0.0

The longitudinal stresses Ozq and Ogy are due to the radial temperature

distribution and an assumed couple force Pg (fig. 22).

C. Compatibility at the Junction radius Ty - To determine the free-

bodied deformations of each element at a station, compatibility between the
~lining end the base material at radius r; must be satisfied. Two unknown '
forces must be determined; (1) a radial contact pressure, p, due to the
difference in physical properties (ag, oy, ete.) and, (2) a couple force

P., which restores longitudinal compatibility (fig. 22). To obtain the
values of P. and p simultaneous solution of the free body deformation
equations in the radial and the longitudinal direction for each element is
required. i

The free-bodied radial displacement (egs. (Bll) and (Bl2)) due to T,
(ref. 3, p. 241) due to p and a Poisson's effect due to P, are set equal
at radial position r B '

J':
2 2 , 2 2 P '
r.p /rS + 1 Pr.v r.p [rs + r§ P.r.v
> (T, ) ey L U M RN I ¢
Js G rgvf rg G Agkq 3N By rg - r% N Ay

(B16)

The free-bodied axial displacement of a composite section of unit
length (fig. 22) due to Po, Cz,and p are set equal at a station:




22

' 2 2
TP R mged -3 R Ty Ey(§ - r%)

d

~ (B17)

where the approximate value of a uniform axial stress due to a radial
temperature distribution across section G is

20 EG |
C3,q = o oar (B18)
3

and the approximate value of a uniform axial stress due to a mean value of
the radial temperature distribution across cylinder N is

Cs,y = ayEyTy (B19)

Equations (B16) and (Bl7) are solved simultaneously for P, and p at
each station.

-D. Total free body motions at r,. - The deformation of a cylinder due

to an external pressure p, and an internal pressure pj 1s given by
equation (207), reference 3 as:

2 2 2,2
o = (%— ‘> TiPi - ToFo) .. 4 (l +'J>'riro(Pi - Po) (B20)
B rZ - r? \ B (r? - 28)r
o i "o i
By -substututing P, = 0, p; into equation (B20) the free radial

deformation of cyllnder (@ at r
distribution T:

o due to p and the radial tempergture:

2 .
2ror:p Pirove
J 1 c-0
u =——-—-—-—-——-+u - (BZl)
° By(x? - r%) ° Ly |
o 3 ,
Similarly the total free radial deformation of cylinder (@) at r, and r; is:
2.2 e . :
ralra(l - vy) + r4(1 +v,) o P.T .V
ug = .g».[c G« Lo G:] +‘3-c': _.ec G (B22)

AgEg

EG(rg - rg):c
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, rz(l - v + rz(l + v D Por.v.
u; g = b G : G] + ul ¢+ cilN (B23)
Jds 2) J’ ANEN

G(r -

The total free radial deformation of cylinder N at r; is obtained
similarly by setting r =15, p, =P, P; = O

2
__.___J.,____
Uy + uy

2 1
E (r - ri)

(B24)

Applying equation (246) from reference 4, and adding to this equation the
direct stress due to P, the expression for the axial stress o, for

Z
cylinder G (fig. 22):

anl o P
P 2 Tr dr - T |+ 22 (B25)
H - ve) | (28 - xB) g
JTTd ,
Similarly for cylinder N:
) _ G'NEN tj. - ti PC
TN T ) & (526)

The end rotation ¢ and the radial deflection x of c¢ylinder element m
at section n due to the reversal of M, and Mp4y 1s evaluated at the

radius r, using elastic foundation coefficients (egs.(C45) to (C4B).
and fig. 23):

Pc,n,m = ~MnBs m *+ Mn+1B6,m (B27)
Pe,n+1,m = Yo+185,m - YBe,m - ' (B28)

Xe,n,m = “MnB3,m + Mp+1B4,m ' | (B29)
Xe,n+l,m = Mn+1Bzm * MpBy op (B30)

The total free body motions at r, of element m are:

be,n = Ye,n ¥ Pe,n (331),
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8e,n+l = Ye,n+1l * Pe,n+1 N (B32)
8 ,n = Uec,n ¥ *c¢,n (B33)
, Sc,n+l = uc,1r1+]_ + Xc,n+l (B34)

Part II. Compatibility Equatiens

Since the cylinder is a continuous structure the following physical
compatibility ex1sts between the final deflections and rotations at station n
(fig. 23):

Ab,n,m-l = Ab,n,m (3562
C)c,n,m—l = Cb,n,m

Expanding the above equations using the results of the previous part

(egs. (B31l) to.(B34)) and elastic foundation coefficients (egs.(C36).

to (C48)) applied to the unknown redundant shear, RP, and moment, RM,, at
each station n:

Pe,n,m-1 * BMBS pi =~ BEBY p g = RMy 3By o #RPy 3By ny
= Pc,n,m ¥ RMpBz m + RPpBy p - RMh+lB4,m - RPp+1B2m (B37)
ec’n,m-l - R%B5,m—l + RPnBS’m-l + R%hlBG,m"l + RP -l B4,m"l

= Oc,n,m * BMnBs p + REpBz py - RMpyBg oy + RPpiaBy n  (B38)

Introducing the boundary conditions RPj = RMj = RPp = RMp = O and
rearranging the above equations at each station the following matrix formu-
lation is obtained

- — g

RMp ,2,2 = %,2,1
B2 | [%,2,2 = %,2,1
SSE B N - | or [a] [R] = [D] (B39)
By _Gc,n-l,m - Sc:n‘lﬁ}i_l‘
RPpi1) '

Where [A] is a symmetric band matrix of coeff1c1ents of. the unknowns

RP,, RMh
CONFIDENTIAL
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Part III. Calculation of Final Displacements and Stresses
Solution of the above matrix equation yields the unknown moments

and shears which substituted into any side of equations (B37) and (B38)
yields the final motiens at r, of element m at station n, for example

% ,n,m = O%,n,m + ByBs,p + BF B:L m - BMpi1By oy - RPpuiBpp  (B39)

Using the coefficient Hj, Hp, and Hz derived in Appendix C the final
motlons at ry, ri, and ry at station n:

%o,m = Yo,n * H1lxe,n * Ab,n - Beyn) (B40)
A, = Biyn * BpXe,n + on - %,n) (B41)
Ay = uj,n + Hs(xe,n *+ 2 ,n - B,n) (342)’

The subscript m is redundant and will not be used below. The final
longitudinal stresses at statdon n are calculated by adding the effect
of the plane strain moment M, (eg. (B15))minus the redundant moment RM,
to the uniform axial stress (eq. (B25) or (B26)) evaluated at station n;

. ( (ry - zo) )
9z,0,n = 9z,G,n * 2 RMhIG . (Bé32y
9z,J,n = 92,G,n - My - RM“;((:C - ry) (B44)
2,1, © GZ:N;n - (Mn - RMn]):érc - ri) (345)‘

Iz is defined in Appendix C, equation (C3).
From reference 4, equation (239), the general stress-strain relation
for the tangential strain component e is:
€, =aT + 2 [0, - v(o, +0)] *(B46)
t E t r z ,

From the same reference, equation (178)
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Rearranging and substituting o = qg, 0, = Op,0 = 0, o, = Oz,09 E =Eq,

T="Tp o V="Vg €= Ab/rc, the tangential stress at r; is:

b Ao : ) y
5,0 = Eg }; - BgagTy,0 + Vg9z,0 (B47)
.where the subgeript n was deleted for clarity.

Similaxrly at Ty

N
Og,5 = Eq = . EGO"GTr,j + v@0z, j (B48)

r,
d

At r; substituting a = oy, 0O, = Op,i = 0, 0, = Oy,iv E=Ey T = Tr,i’
Vo=V, the tangential stress is:

i

Oy,1 = By EyanTy,i + VN9z,1 (B49)




27

APPENDIX C
DEVELOPMENT AND SUMMARY OF SECTION PROPERTIES, PHYSICAL
 PARAMETERS AND COEFFICIENTS USED IN APPENDIX B

The following list of properties, parameters and coefficients, used '
in Appendix B are developed, defined ahd:summarized:

l.vMbment»of inertia and centroidal distance of a sector.

2. Radius to the neutral axis of a composite section based on geometry
and stiffness.

3. Eguivalent flexural rigidity of a composite section.
4. Spring constant of a 0.0l radian sector.
5. Thin shell analysis correction factors.

6. Summary of beam on elastic foundation coefficients.

Moment of Inertia for a Sector of Cylinder G About Its Neutral Axis

From the mechanics of section properties (fig. 24)

A P At
Ig =Lj/7y2dA='f//j Lj/7 (rxg - r cos B')?.r dr dp‘
A 0] r

J
Iy = rxé(rO - rg)B - % rxG(rg - r?)sin B + % (rg - r%)(ﬁ + sin B cos B) (c1)

Distance from the origin O +to the neutral axis of the sector is

, 6 . ‘ ;
\jfj 1J/q r cos B' r dr ap!
JO T. 8(rg__r?)

= J _ &
TXq = =z

B r,
[ I‘dI‘dB'
MRAGE

. 8in B c2
‘(rz - rg) P x( A)

o
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Substituting rx; into equation (Cl), the moment of inertia of a sector
about its own neutral axis is: '

2
. (rd - r3) . 2
Ig = % < (r2 - r?) * (B + sin B cos B) - % . (rg - rg) 'SIE B (c3)
, o J

Radius to the Neutral Axis of a Composite Section Based on
Geometry and Relative Stiffness

The neutral axis rX, (fig. 25) of a cylinder sector with a lining
(composite section) based on geometry and relative stiffness is obtained
by investigating the resistance to bending and elongation the section
provides to an applied end moment ML = 1 inch pound (double arrow signifies
a moment, right hand rule is assumed). The expression for the couple force
Q applied at rx; and -Q applied at rxy which replaces the moment ML
(figw. 26) is: :

= = | (c4)

Q M1 1
rXy - TXy TXg - Xy
where rxy 'is defined as average radius of the lining N =(rj + riﬁ/z.
Assuming plane strain the G .sector elongates due to Q by an amount
(ref. 4, p. 24)
‘ 2
Qll - v
€0 = —(KTG‘) (¢s)
7 GG
simultaneously N sector compresses:
, Q{1 - vﬁ
€ = - C6
z,N ANEN (ce)

Ignoring the bending resistance of N, compatibility between the sectors is
restored in terms of a second couple force P as shown in figure 26.

Translation of the couple force P from the r. to rxg creates a moment
P(rxy - rxy), where rxy is substituted for r; to simplify derivations to

follow. Strain on sector G at rj due to the above moment is:
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e' _ P(TXG - rxN)z(l -"ch}) (¢7)
Z,X Eglg

Using equations (C5) to (C7) and including the effect of P in the same
manner as . Q in equations (C5) and (C6) compatibility at ry is restored by:

Q1 - vé) AP(l - vé)v,dP(rxG - rxN)z(l - vé)

AgEg el e! Eglg
a1 - v§) P(1 - vg) ()
AyEy Ay |
substituting the value of Q in (C8):
Plrxy -~ Tx )2\
1 _p _ Plrxg - rxy )
2 P o) l 2 .

x (L -v8) =| S — (1 -v&) (C9)

Solving for P:

Iy - VBERAL + (1 - V%)EGAG

P = , . e (c1o)
- o0 a g RN 2 , , z}
(rxG - TXN){%NAN[EG'+ AGﬂrxG~-“rxN) ](l -'VG) + EGAGIG(l - “N?
With reference to figure 27 the total uniform axial strain is:
€z,t0t = €z,G ~ €z,N (c11)
by similar triangles:
€ € e, w(rxs - rxy)
z,t0t 2,00 or T, = rXy - 2N "G N (c12)

rXg - TRy Yo - TXy €2, tot
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Substituting (C4), (C5), (C6), (C10) into (C12) and simplifying:

= rre 4 (r - v%)AgEG(rxG - rxy) (013)
N agE(L - vB) + AgBg(l - vE)

c
r, 1is evaluated at each station along the léngth.

Equivalent Flexural Rigidity
Equivalent flexural rigldity Deq is defined as the flexural rigidity
of a sector of a cylinder which will produce & strain at a point on a
sector equal to the strain obtained by the flexural rigidity of a .composite
section.

Substituting (C4) and (C10) into the rhs of (C8)

(1 - vﬁ)(l - VE)AGgfo - rxN)

c = - - s - (Cc14)
z,N (1 - vB)Egay[Tg + Aglrxg - rxp)2 |+ (1 - v&)EgTahg
From figure 27, the strain €, )y can be defined as
Mi(r. - v )(1 - v2 ) Mi(r. - rxy)
N eq’ c N
- € = 6(r., - rxy) = e , = - (C15)
z,N ¢ N Equtot Deq
Substituting (C1l4) into (C15) and rearranging, Deq is
5 - Zeqltot
L1 -42)
Veq |
- 2 2 2 :
- (I'c - I'X.N)<(l - VG)ENANEIG_ + AG(I'XG - I'XN) :l+ (l —VN)EG_IGAG} (016)

(1 - vﬁ)(l - vB)Ag(rxg - rxy)

Deq is evaluated at each station along the length.
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Spring Constant K of a Sector of a Composite Cylinder

To use elastic foundation theory a spring constant must be derived.
Pigure 28 shows a sector of a composite cylinder with a circumferential
cut in equilibrium under a shrink-fit pressure load pg, 2 pressure force
P, ‘to restore compatibility, and a uniform pressure force 'Pa which is
present due to the cut. Deflection compatibility between a and b is
established using Lame's equations from reference 3, page 240 for deforma-
tions symmetrical about an axis due to internal and external pressures.

Parts a, and ‘b make up sector G. At r. the deflections of a

and N are equal, therefore J
. = . Cl7
ua:J uN:J ( )
or: (
1 - va\|z%p. - r2(p, - D) 1+ va\lrsré(p, - + D,)
G\|%jPs = Te\Pg = Pe | G|[Fg5c\Ps = Py T Pe
B, 2 0 J '\ E 2 _ 2
G (rg - rj) G (rg - rj)
o 2 2
r.p Z; + re
Lol L J_ . (c18)
Ey \p2 - o2
J i
Solving for pg
2ErE(pg - Do)
- : (e19)
where: g
v
S = EN[%? + r§ + VG(rg - r?)] + EG(rgv- rg): (c20)
At r, the deflection of a is:
o _zpgrire - ro(pg - 2)[FE(L - vg) + 73(L + vg)] (c21)
a,c

2
3)

2
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At r. the deflection of B is:

r
Pccr

2

Us = 2
Uyo = - H =
G "o

+ vg (c22)

Setting Ug,c = Up,c and solving for pg:

R—Exz§+r§ - vG(rg -r%)]~ S

P, = Py I (C23)
R - 2r§ L Jl.es
I'2 - I'2
o) c
where
R - 4r2r2EN (c24)

Setting the deflection of B at r, to unity, substituting equation (C23)
into (C22), solve for pg to obtain:the spring constant K which is equal
to Py

\
( 2 - ]
R - Zr g - .
2 - 12
K—-p _EG ro rcu o C > (025)
=Dy = — ‘ '

I‘c rg+r§+vG(rg_r2) R '}24_1, -y (I' -I‘-):]- g

o

S U SRS GHRRUR .
K is evaluated at each station along the length.
Compensation for Use of a Thin Shell Theory on & Thick Shell Model

By using a method of solution based on the theory of heamg on elastlc
foundation a thin shell arnalysm (r/t > 10) -is implied, however, the
mathematical model to be analyzed is physically a thick she2l (r/ t<2).

“, Coefficients will be derived below to be applied to the thin shell analysis
radial displacement at r, of the composite sector to obtain thick shell
analysis dlsplac:ements at various other radii (ro > T3s and rl)

Tame's thick shell equations used previously in the calculation of a
spring constant (eq. (C18)) will be used to derive a compensating coefficient
H which is defined as a ratio of a radial displacement at various radii to

the displacement of the sector at the neutral axis Tot
®
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_u | | '
H = % (cz26)

The displacement at r, due to pressure P. 1is obtained from equation (C22)

o (‘Pc)rc[rg + 1§ + vg(rd - rgﬂ ,
EG(ro - rc)

o due to p, 1is obtained from reference 3:

) (1 - VG)[I‘EI'O(-pc)] . (1 + vg) r (-pc):l 2ra aro(-pg)

2 2 2 2 2
EG(ro - rc) EG(ro - ’r.c)ro EG(r - c)

This radial displacement at r

(cz8)

Substituting (C27) and (C28) into (C26) and simplifying, the coefficient
at ro is:

- , ‘Zrorc (c29)
= 29
1
r?‘ + rg + VG‘(I' - I'g)
The displacement of the llnlng at radius rl due to external pressure pg is:
- - , 2yl 2
Bl VA LA e A o (c50)
’ By(r§ - rf)  Ey(e§ - 2)ry my(ef - 29

The radial displacement of r, due to external pressure pg - Pc and an
- internal pressure pg:

(l - vG)[%aps - r2(p, - pci]r (l + vg)rir r2[pg - (2, - ch]
EG(I‘ - rz) EG(:r'2 - rz)r

_ rc{ZPsrg - (pg - Pc)ErE + I‘g - VG(I’E - r? )]}
- 2
)

5 (c31)
EG(I'C - T

Substituting (C30) and (C31) into (C26), replacing pg by equation (CL9)
the coefficient to obtain the motion at ry is: :
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.
-4r rzrlEG(r - rj)

- r%){éENr [rz + r -y (rc*- rz):]S}

where S is defined by equation (C20). The displacement at the juncture
radius rj due to external pressure (pg - Do) and an internal pressure of Dpg:

Hy = (c32)

_ (1 - VG)[erS - &(pg - Do ]rj (l + VG)I%I%_EES - (pg - Pcﬂ

1 =
J , 2 2 2
| EG(r - rJ) EG(rc - rj)r.

rj<?5E%§ + r§‘+ VG(rg - rg)] B 2rc(Pa - Pc)}

2 2
EG(rc rj)

(c33)

Substituting (C31) and (C33) into (C26) replacing pg by equation (C19)
the coefficient to obtain the motion at T is: ,

2r .r (EN[r + r2 + vg(rg - 4 )__J - S} (C3aY
£ 4rlriw —[r +r2—v(r -r)]S. v
Je N e J G'\Te g

Hy, Hy, Hz are evaluated at each station along the length.

Summary of Elastic Foundation Coefficients

The fuel element model is divided into m finite cylinder elements
(fig. 9) of length 1y such that the parameter Alp < n/4. The factor A
ag defined in reference 2, page 4, has been redefined for this analysis:

(c35)

where
K, = average of K, and Kp.q; of element m (eq. (C25))
a

Deq,n = average of ,Deqn._ and.. D of element m (eq. (C16))

%k

The coefficients obtained from reference 2, pages 52 and 53 are
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summarized below for use in determining displacements and rotations at
both ends (stations) of element m.

For a finite beam on an elastic foundation (spring rate Kp) with free
ends the displacements u at both end points, stations n and n +'1,
respectively, due to a concentrated shear force V, applied at end n are;

Un = VnB1,m (c38)
o VnBZ,m - , ‘ (C37)
where
: _ [sinh Al cosh Al - sin Al cos Al
Biym = ( DEN ) 2\ (c38)
B _ [sinh Al cos Al - sin Al cosh A\ o3\ C39
2,m ( DEN : (c39)
DEN = (sinh®Al - sin®AL)K, (C40)
The subscript m applied to A and 1 have been deleted for clarity.
Similarly the displacements wu and rotations @ due to a concentrated
moment Me applied at end n are;
3 up = MeBz 5 (Cal)
Unty = MeBy o (042)’
0y = MeBg (C43)
® 4 = MeB6’m (Cas)
where
B _"sinhzkl_f sinzkl*zxz (C45)
3,m DEN ‘

DEN

B4,m - (sinh'kl sin KZ) 4%2 (C48)
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. éinh Al cosh Al + sin Al cos Al )43
BS,m —‘-4 ?\

o (c4a7)
_[sinh Al cos Al + sin Al cosh Al ;43 ‘
Bg,m ~( i )Qx. (C48)

The above coefficients are evaluated at each station n along the length.
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ANATYTICAL STUDY OF SOME THERMAL STRESSES IN A NUCLEAR ROCKET FUEL ELEMENT (U)

by Edward R. Hersman, Eugene J. Pleban, John S. Clark,
and Dennis P. Townsend

ABSTRACT

An slytical calculation was made to determine the approximate magnitude
of thermal: stiresses in: a nuclear rocket . fuel element when heated either:. -
in the reactor or by electrical conduction. The analysis was confined to
the elastic region. This limiation results in stress values which can be
used only in a comparative way.

The study showed that very high stresses are induced into the surface
coating of NbC as a result of the great dissimilarity in the mean coefficient
of thermal expansion of the coating and the graphite body of the fuel element.
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Fig. 20. - Sketch of composite cylinder.
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Fig. 21. - Rigid body rotation of element m at stations n and n + 1.
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Fig. 22. - Determination of couple force P, and contact pressure p.
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Fig. 23. - Deflection and rotation compatibility between finite cylinders at Tae
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Fig. 24. - Moment of inertia - sector of a cylinder.
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Fig. 25.

~ Neutral axis of a composite section.
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Fig. 26. - Resistance to bending and elongation due to M = 1 in. 1b.
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Fig. 27. - Total uniform axial strain &, 4ot-
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Fig. 28. - Spring constant of a composite sector.
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